Digital Circuits ECS 371

Dr. Prapun Suksompong

Lecture 15

ECS371.PRAPUN.COM

Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Digital Logic Circuit Types

- Combinational Circuit
 - Output depends only on current inputs
 - No feedback loops
 - "memoryless"

- Sequential Circuit
 - Output depends on past history plus current inputs
 - Contains feedback loops
 - Has memory
- Up to this point, we have focused on "**combinatorial logic circuits**" (i.e. the output of the circuit is dependent on the current input ONLY).
- Now we will shift our focus to "**sequential logic circuits**" (i.e. the output depends not only on the present input but also on the **history** of the input.
- The basic building blocks for sequential logic circuits are "latches" and "flip-flops"

Sequential Logic Circuits

- Memory is represented in the form of states.
- "State" embodies all the information about the past needed to predict current output based on current input.
- State variables are one or more bits of information representing logic signals in a circuit
 - Tell you "where the circuit is"
 - Used in conjunction with inputs to derive current outputs of a sequential circuit
- In combinational circuits, only need to look at the current inputs to get the current output.

S-R Latch

- A **latch** is a temporary storage device that has two stable states (bistable). It is a basic form of memory.
- The S-R (Set-Reset) latch is the most basic type.
 - It can be constructed from NOR gates or NAND gates.
 - With two cross-coupled **NOR gates**, the latch responds to **active-HIGH inputs**.

• With two cross-coupled **NAND gates**, the latch responds to **active-LOW inputs**.

S-R Latch

• There are two versions of SET-RESET (S-R) latches.

(a) Active-HIGH input S-R latch

(b) Active-LOW input $\overline{S}-\overline{R}$ latch

The "Old Q"-"New Q" Analysis

$$Q_{new} = \overline{R + X}$$
$$= \overline{R + \overline{Q_{old} + S}}$$
$$= \overline{R} \cdot (Q_{old} + S)$$

Inp	out	Output
S	R	Q _{new}
0 0		Q _{old}
0	1	0
1	0	1
1	1	0

Active-LOW S-R latch

Inp	out	Output	
S	R	Q _{new} Q _{old}	
0	0		
0	1	0	
1	0	1	
1	1	0	

Assume the latch is initially RESET (Q = 0) and the inputs are at their inactive level (0). To SET the latch (Q = 1), a momentary HIGH signal is applied to the *S* input while the *R* remains LOW.

To RESET the latch (Q = 0), a momentary HIGH signal is applied to the *R* input while the *S* remains LOW.

The "Old Q"-"New Q" Analysis (2)

$$Q_{new} = ?$$

In	out	Output
S	R	Q _{new}
0	0	
0	1	
1	0	
1	1	

Active-Low S-R latch

Inp	but	Output	
S	R	Q _{new}	
0	0	1	
0	1	1	
1	0	0	
1	1	Q _{old}	

Assume the latch is initially RESET (Q = 0) and the inputs are at their inactive level (1). To SET the latch (Q = 1), a momentary LOW signal is applied to the *S* input while the *R* remains HIGH.

To RESET the latch a momentary LOW is applied to the R input while S is HIGH.

Never apply an active set and reset at the same time (invalid).

Summary: Active-LOW Input Latch

• Truth table for an active-LOW Input latch

- Condition $\overline{S} = \overline{R} = 0$ is avoided because it results in an invalid mode of operation and is a major drawback of any SET-RESET type of latch
- Operation of the active-HIGH input Latch is similar but requires the use of opposite logic levels.

Gated Latch

- A gated latch is a variation on the basic latch.
- The gated latch has an additional input, called enable *(EN)* that must be HIGH in order for the latch to respond to the *S* and *R* inputs.

Gated Latch

Observe that:

$$A = \overline{S \cdot EN} = \overline{S} + \overline{EN}$$
$$B = \overline{R \cdot EN} = \overline{R} + \overline{EN}$$

EN	А	В
0 ⇔	1	1
1 ⇒	\overline{S}	\overline{R}

Example: Gated S-R Latch

Gated D latch

- The D latch is a variation of the S-R latch.
- Has only one input in addition to EN.
 - This input is called the D (data) input.
- Combine the S and R inputs into a single D input.

Gated D Latch: Operation

- A simple rule for the D latch is:
 - Q follows D when the Enable is active.
- When EN is LOW, the state of the latch is not affected by the D input.
- Output is "latched" at the last value when the enable signal becomes not asserted
- Truth Table:

 Q_0 is the prior output level before the indicated input conditions were established.

Flip-Flop

- Latches sample their inputs (and change states) any time the EN bit is asserted
- Many times we want more control over when to sample the input
- A **flip-flop** differs from a latch in the manner it changes states.
- A flip-flop is a *clocked* device.
- Flip-flops are **synchronous**: the output changes state only at a specified point on the triggering input called the **clock (CLK)**
 - In other words, changes in the output occur in synchronization with the clock.
- An **edge-triggered flip-flop** changes state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock pulse.

Edge-Triggered Flip-Flops

"Edge-triggered flipflop" is redundant (all flip-flops are edgetriggered

Positive edge-triggered (no bubble at C input)

D Flip-Flop

- The truth table for a positive-edge triggered D flip-flop shows an up arrow to remind you that it is sensitive to its D input only on the rising edge of the clock.
- The truth table for a negative-edge triggered D flip-flop is identical except for the direction of the arrow.

In	puts	Outputs		
D	CLK	Q	Q	Comments
1	1	1	0	SET
0	1	0	1	RESET

(a) Positive-edge triggered

In	puts	Outputs		
D	CLK	Q	Q	Comments
1	Ļ	1	0	SET
0	ł	0	1	RESET

(b) Negative-edge triggered

Ex: Positive-edge triggered D Flip-Flop

• Determine the Q output waveform if the flip-flop starts out RESET

