Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@siit.tu.ac.th Lecture 15Office Hours:
BKD 3601-7
Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Digital Logic Circuit Types

- Combinational Circuit
- Output depends only on current inputs
- No feedback loops
- "memoryless"
- Sequential Circuit
- Output depends on past history plus current inputs
- Contains feedback loops
- Has memory
- Up to this point, we have focused on "combinatorial logic circuits" (i.e. the output of the circuit is dependent on the current input ONLY).
- Now we will shift our focus to "sequential logic circuits" (i.e. the output depends not only on the present input but also on the history of the input.
- The basic building blocks for sequential logic circuits are "latches" and "flip-flops"

Sequential Logic Circuits

- Memory is represented in the form of states.
- "State" embodies all the information about the past needed to predict current output based on current input.
- State variables are one or more bits of information representing logic signals in a circuit
- Tell you "where the circuit is"
- Used in conjunction with inputs to derive current outputs of a sequential circuit
- In combinational circuits, only need to look at the current inputs to get the current output.

S-R Latch

- A latch is a temporary storage device that has two stable states (bistable). It is a basic form of memory.
- The S-R (Set-Reset) latch is the most basic type.
- It can be constructed from NOR gates or NAND gates.
- With two cross-coupled NOR gates, the latch responds to active-HIGH inputs.
- With two cross-coupled NAND gates, the latch responds to active-LOW inputs.

S-R Latch

- There are two versions of SET-RESET (S-R) latches.

(a) Active-HIGH input S-R latch

(b) Active-LOW input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latch

The "Old Q"-"New Q" Analysis

$$
\begin{aligned}
Q_{\text {new }} & =\overline{R+X} \\
& =\overline{R+\overline{Q_{\text {old }}+S}} \\
& =\bar{R} \cdot\left(Q_{\text {old }}+S\right)
\end{aligned}
$$

Input		Output
S	\mathbf{R}	$\mathrm{Q}_{\text {new }}$
$\mathbf{0}$	$\mathbf{0}$	Q old 2
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Active-LOW S-R latch

Input		Output
S	R	$\mathrm{Q}_{\text {new }}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{Q}_{\text {old }}$
$\mathbf{0}$	$\mathbf{1}$	0
$\mathbf{1}$	$\mathbf{0}$	1
$\mathbf{1}$	$\mathbf{1}$	0

Assume the latch is initially RESET (Q $=0$) and the inputs are at their inactive level (0). To SET the latch ($Q=1$), a momentary HIGH signal is applied to the S input while the R remains LOW.

To RESET the latch ($Q=0$), a momentary HIGH signal is applied to the R input while the S remains LOW.

The "Old Q"-"New Q" Analysis (2)

$$
Q_{\text {new }}=\text { ? }
$$

Input		Output
\bar{S}	\bar{R}	$\mathrm{Q}_{\text {new }}$
$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	1	
$\mathbf{1}$	0	
1	1	

Active-Low S-R latch

Input		Output
\mathbf{S}	\bar{R}	$\mathrm{Q}_{\text {new }}$
$\mathbf{0}$	0	1
$\mathbf{0}$	1	1
1	0	0
1	1	$\mathrm{Q}_{\text {old }}$

Assume the latch is initially RESET (Q $=0$) and the inputs are at their inactive level (1). To SET the latch ($Q=1$), a momentary LOW signal is applied to the S input while the R remains HIGH.

To RESET the latch a momentary LOW is applied to the R input while S is $\mathrm{HI} \overline{\mathrm{G}} \mathrm{H}$.

Never apply an active set and reset at the same time (invalid).

Summary: Active-LOW Input Latch

- Truth table for an active-LOW Input latch

Input		Output		Comment	
\bar{S}	\bar{R}	\mathbf{Q}	\bar{Q}		
$\mathbf{0}$	$\mathbf{0}$	1		Invalid Condition	
$\mathbf{0}$	1	1	0	Latch SET	
1	0	0	0	Latch RESET	
1	1	NC	NC	No change.	

- Condition $\bar{S}=\bar{R}=0$ is avoided because it results in an invalid mode of operation and is a major drawback of any SETRESET type of latch
- Operation of the active-HIGH input Latch is similar but requires the use of opposite logic levels.

Example

Gated Latch

- A gated latch is a variation on the basic latch.
- The gated latch has an additional input, called enable ($E N$) that must be HIGH in order for the latch to respond to the S and R inputs.

(a) Logic diagram
(b) Logic symbol

Gated Latch

Observe that:

$$
\begin{aligned}
& A=\overline{S \cdot E N}=\bar{S}+\overline{E N} \\
& B=\overline{R \cdot E N}=\bar{R}+\overline{E N}
\end{aligned}
$$

EN	A	B
$0 \Rightarrow$	1	1
$1 \Rightarrow$	\bar{S}	\bar{R}

This is the same as the active-LOW input latch!

Example: Gated S-R Latch

(a) Logic diagram

(b) Logic symbol
(b)

Gated D latch

- The D latch is a variation of the S-R latch.
- Has only one input in addition to EN.
- This input is called the D (data) input.
- Combine the S and R inputs into a single D input.

Gated D Latch: Operation

- A simple rule for the D latch is:
- Q follows D when the Enable is active.
- When EN is LOW, the state of the latch is not affected by the D input.
- Output is "latched" at the last value when the enable signal becomes not asserted
- Truth Table:

Example: Gated D Latch

(a) $E N$
(b) Q

Q follows D when the Enable is active.

Flip-Flop

- Latches sample their inputs (and change states) any time the EN bit is asserted
- Many times we want more control over when to sample the input
- A flip-flop differs from a latch in the manner it changes states.
- A flip-flop is a clocked device.
- Flip-flops are synchronous: the output changes state only at a specified point on the triggering input called the clock (CLK)
- In other words, changes in the output occur in synchronization with the clock.
- An edge-triggered flip-flop changes state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock pulse.

Edge-Triggered Flip-Flops

"Edge-triggered flipflop" is redundant (all flip-flops are edgetriggered

Positive edge-triggered (no bubble at C input)

(a) $\mathrm{S}-\mathrm{R}$

(b) D

(c) J-K

Negative edge-triggered (bubble at C input)

D Flip-Flop

- The truth table for a positive-edge triggered D flip-flop shows an up arrow to remind you that it is sensitive to its D input only on the rising edge of the clock.
- The truth table for a negative-edge triggered D flip-flop is identical except for the direction of the arrow.

(a) Positive-edge triggered

(b) Negative-edge triggered

Ex: Positive-edge triggered D Flip-Flop

- Determine the Q output waveform if the flip-flop starts out RESET

